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This paper presents a particle-grid superposition method for solving the Navier-Stokes 
equations. Starting from a deterministic vortex method, the idea is to superpose a finite 
difference method where large distortions of the particle distribution occur. A matching 
between both methods is proposed which eventually leads to a domain decomposition 
strategy that makes it possible to simulate viscous flows at high Reynolds numbers with a 
limited number of points. Numerical illustrations of the method are given for flows past a 
cylinder at Reynolds numbers of 3000 and 9500. 0 1990 Academic press, IX. 

1. INTRODUCTION 

Viscous flows at high Reynolds numbers are a challenging problem for applied 
mathematicians. Many questions related to the limiting process when the Reynolds 
number tends to infinity remain unanswered, and numerical methods are now 
attractive alternatives to investigate those problems. However, the resolution of the 
very small scales that are present for large Reynolds numbers result for conven- 
tional numerical methods in memory requirements that have so far prevented a 
direct approach for turbulence, even with supercomputers. 

From this point of view, vortex methods seem to be a promising approach. Two 
features, in particular, of these methods make it possible to hope to reach high 
Reynolds numbers with an affordable number of points: these methods have been 
primarily designed for inviscid flows and therefore perform well in convection 
dominated problems; moreover, only the support of the initial vorticity needs to be 
discretized, and in most situations the size of this region decreases when the 
Reynolds number increases. For instance, in the case of a flow past an obstacle the 
number of points can be expected to be O(G), as compared to the O(Re) 
number of points required for a finite difference method. For the validity of a 
particle method, the underlying assumption is that, given a proper particle 
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discretization of both the initial vorticity and the source terms at the boundaries, 
the particles moving with the fluid will maintain the desired resolution. A popular 
particle method for solving viscous flows is the random walk method [3]. This 
method has been successfully applied to a number of situations. However, its 
accuracy is questionnable and it may be desirable to derive different treatments of 
the diffusion, while keeping the nice features of particle methods for convection 
dominated flows. An attempt in that direction are the so-called deterministic vortex 
methods [lo]. These methods based on integral approximations of diffusion 
operators enjoy nice convergence results and have recently proved to be a 
potentially accurate alternative to random walk methods [4]. However, their 
accuracy is obviously conditioned by the ability of the moving grid made up by the 
particles to represent the smallest scales. Unfortunately in non-smooth flows or 
where high gradients of the velocity are present, particles are most likely to 
accumulate in certain zones while missing in other locations. In the later case the 
accuracy of a diffusion process involving only the particles is doubtful. Moreover, 
stability problems also occur that are related to local accumulations of particles, 
requiring very small time steps. A possible way to deal with these problems would 
be to remesh the computational domain, but, in addition to leading to complex 
codes, this process might deteriorate the advantages of the self adaptativity of the 
vortex methods in the treatment of the convection. 

The strategy chosen here to overcome accuracy problems in regions where 
particle are missing is to superpose a fixed grid whose nodes are used together with 
Lagrangian particles to resolve the diffusion, thereby enforcing a minimal resolution 
everywhere. The grid points can be considered as non moving particles; therefore 
the diffusion formula involved in the deterministic vortex methods may be applied 
to these points as well, provided their volumes are computed in a consistent way. 
The computation of these volumes, which can be viewed as quadrature weights 
associated to the locations of the particles, is actually the key point to allow a nice 
transfer of the vorticity between the grid and the lagrangian particles. Once it is 
done, the resulting algorithm can be considered as a correction of the original 
vortex method. For the method to be economic, the underlying assumption is that 
the corrections occur only in very specific zones, which we believe is reasonable in 
many situations where these zones can be determined from physical grounds. Let 
us point out that for the resolution of the diffusion, the vorticity is never involved 
in any assignment step, which makes this method definitely different from the 
conventional particle-in-cell methods. Also, as it will be seen in Section 5, it 
significantly differs from a hybrid method proposed in [ 111. 

An outline of this paper is as follows: in Section 2 we recall the definitions of 
deterministic vortex methods for the Navier-Stokes equations. We discuss stability 
problems and propose a modified method which overcomes these difficulties. In 
Section 3 we present the particle-grid superposition method. In Section 4 we 
describe a vortex-in-cell algorithm that involves these particle-grid superposition 
techniques for solving 2D viscous flows in exterior domains and we show 
preliminary numerical results for flows past a cylinder at Reynolds numbers of 3000 
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and 9500, for which experimental results are available. A comparison between our 
results and other numerical results for the same Reynolds numbers as given in [9] 
also allows us to highlight both the possibilities and the limits of our method. 
Finally in Section 5 we interpret our superposition techniques in terms of domain 
decomposition terminology, we draw some conclusions, and we contrast our 
method with the one in [ 111. 

2. DETERMINISTIC VORTEX METHODS FOR NAVIER-STOKES EQUATIONS 

Let us consider the vorticity formulation of the two-dimensional Navier-Stokes 
equations in the whole plane: 

(1) 

w(.,O)=w() 

curlu=w 

div u = 0 
r 

u+u,. 

(2) 

(3) 

(4) 

(5) 

Particle methods consist in approximating the vorticity by a set of particles 
determined by their weights clp and locations xp. A weight up combines the local 
value of the vorticity op and the volume v,, of the particle, according to the formula 
c(,, = vpop. The particles move as material points which means that the xp satisfy 

dx 
A= 24(x,(t), t); 
dt 

x,(O) =x;. 

In the incompressible case the volumes of the particles are constant in time and 
correspond to the proper weights associated to the quadrature points x;. 
Deterministic vortex methods consist in accounting for the diffusion by making the 
weights of the particles evolve according to the equations: 

do, v 
--& = yi’c (cop’ - cop) up.Arl(xp -x,.); o,(O) = Q&c;, 0). 

P’ 

In the above equations xi and cti are the initial positions and weights of the 
particles, 4 is a small parameter, and 

A,(x)=q-2A ; ) 0 
581/89/2-4 
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where A is a symmetric kernel such that 

s x$fl(x) dx= 2, i= 1, 2. (8) 

For the convergence of such methods we refer to [lo] for the linear case, and to 
[S] for the Navier-Stokes equations. Let us just mention that this class of methods 
is based on integral approximations of the diffusion operator followed by a 
quadrature of the integral along particles, and that the order of the resulting 
approximation is primarily based on the moment properties of the kernel A. For 
instance, only under the above assumptions on A, a Taylor expansion of w at the 
point x easily yields 

Nx) = $ J (W(Y) - 4x)) A,@ - Y) 4 + WI*). 

The formula (7) then derives from a quadrature of this integral evaluated at the 
particle xP, with quadrature points xPS and quadrature weights u,,. If in addition the 
moments of order 4 of the kernel A vanish, the resulting integral approximation is 
of order 4 (we will refer in the sequel to such kernels as kernels of order 4). 

We now illustrate some important features of these diffusion techniques. For 
simplicity we focus on the one-dimensional version of (7) for a very simple kernel 
shape, 

if 1x1 < 1 
otherwise. 

We also assume that we are starting with a uniform distribution of particles, with 
a mesh size h (that is up E h), and that the density of particles remain locally 
constant at all times. In other words R can be divided at all times into subdomains 
where the distance between particles is constant: 

R=U&; 
h, = distances between nearest particles in Qnk 

k Nk = ‘l/h,. 

In Qnk the right-hand side of the diffusion scheme (7) actually reduces to a finite 
difference scheme on a grid with grid size h,, the stencil of which can be easily 
checked to be 

Nk Nk 1 
- -N,,- 

’ “” Nk + 1 ’ 
- 0, . . . 

’ “” Nk + 1 ’ , I 
. 

N,+l (9) 

v 
2Nk+ I 
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This stencil is readily seen to be consistent with 

where S; = CjIz ip. 
Given the explicit values of S; and S;, 

s; = 52(2n + l)(n + 1); s; = $‘(?I + 1)2, 

we observe that SF - Sp/(Nk + 1) N Nil12 when Nk + 03. This allows to check 
that if N, ‘v N= q/h (that is if the density remains as initially) the diffusion 
formula (7) is consistent with the original diffusion equation in the limit iV+ co. 

We now come to a stability analysis, which turns out to be very simple and 
enlightening in the present model situation. Assuming that we use a forward Euler 
scheme for discretizing (7), the resulting algorithm can be written 

[o(t+ At)] = [o(t)] + 12 F% [‘4][o(r)], 

where A is a matrix whose block corresponding to Sz, have rows given between 
brackets in (9). As a result, the maximum eigenvalue of A is maxk Nk and therefore 
the scheme (7) is stable under the condition: 

12$92. (10) 

This means that if the density remains constant (Nk 2: N) the stability condition 
looks like classical stability conditions for finite difference methods: 

However, if particles locally accumulate then N, may become much larger than iV, 
resulting in drastic restrictions on the time step. A simple way to overcome these 
difficulties is to compute a local value for the parameter I], which is an approxima- 
tion of the actual value of q when the particle distribution is smooth and which 
corrects the effects of the accumulations of particles. 
A possible formula is 

If we replace A, by (l/q,) ~I(x/q), we can check the stability on our 1D example 
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under a condition that is independent of N,: in this case the above formula leads 
to 

.h h r/p=A-‘AG=hk for x,ESZ,, 

and the stability condition (10) becomes 

The time step can now be choosen independent of Nk. In 2D the natural extension 
of the proposed correction is to set 

The modified diffusion formula is then: 

do, v 
---&= 7 1 (cop! -up) up~Arl,p’(xp -xx,.); o,(O) =4x;, 0). 

P’ 

The two-dimensional case raises the following question: in a 2D incompressible 
flow the mechanism for the accumulations of particles is still one-dimensional and 
accumulations of particles along one direction usually go with stretching along 
other directions (a typical example of such a situation is in the vicinity of a stagna- 
tion point). In this case the correction in the coefficient qp is likely to “penalize” the 
diffusion indifferently along all directions, which is not desirable. To overcome this 
difficulty, it is possible, still on the basis of our one-dimensional analysis, to incor- 
porate into our diffusion scheme a correction method which distinguishes between 
the two axis directions (that is, which computes two values, qp,, , rip *, instead of 
one). However, the overall method has not shown a significant sensitivity to such 
a distinction and for simplicity we will omit its description here. 

Let us finish this section with an unexpected (but of practical interest) conse- 
quence of the corrections proposed here in the ‘case where boundaries are present. 
Let us go back to our one-dimensional model problem and consider a particle 
located at the boundary. In this case the formula for qp becomes 

and the stencil at the particle x, is now 

1 
-0 2 tN,+l’“” N,+l’ >... 1 . 
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It is then readily seen that this stencil yields a value of the diffusion at the particle 
xP which coincides with what would have been found if particles had been created 
on the other side of the boundary, with equal vorticity, before applying formula (9) 
in the whole space. This means that the boundary condition implicitly implemented 
in the scheme is a homogeneous Neumann boundary condition. The implication of 
this observation for the two-dimensional case will be discussed in Section 4. 

3. THE PARTICLE-GRID SUPERPOSITION METHOD 

Even in its modified form (1 1 ), the diffusion scheme can obviously not accurately 
handle regions where particles are missing. More precisely, the consistency of the 
diffusion method is primarily based on the moment properties (8) of the kernel A, 
and on the accuracy of the following approximations: 

Q2 = J ( xp-xp.)fn,(xp-Xp~)dXp 

‘y~up’(xp-xp.);Arl(xp-xp.), i=l,2. 
P’ 

This accuracy is very much conditioned by the smoothness of the flow map which 
determines the positions of the particles at every time. For high Reynolds numbers, 
the vorticity can reach high values in certain regions, and so do the derivatives of 
the flow map. As a result, one can expect a dramatic deterioration of the accuracy 
of the particle formula for the diffusion in these regions. This is particularly unplea- 
sant since in these regions of high gradients the flow is likely to be diffusion 
dominated rather than convection dominated. Assuming that their locations can be 
predicted from physical grounds (the very neighbourhood of the obstacle in our 
case), the remedy consists in superposing a grid on the particle distribution in order 
to enforce a minimal resolution for the diffusion there. For simplicity we wish to 
consider the grid points as non-moving particles and to incorporate them in the 
diffusion formula (11). For that we need to assign volumes to these points. We 
indicate two ways of achieving that. 

In the sequel the symbols y and w, with indices i,j, refer to grid points (locations 
and volumes), while the symbols x, u,p,p’ refer to the lagrangian particles. In light 
of the preceding remarks, a desirable property for the new particle distribution 
(including grid points) would be that, at each grid point y,, 

1 up’(Yi-xp’)2 A,(J’i-xp’)+C wj(Yt- Yj)’ Aq(Y,-J’~)=4r12. (121 
P’ i 

Introducing w, as new degrees of freedom allows to ask (12) to be satisfied at each 
point yi. This results in a linear system with unknown vector w = (w,), which can 
be rewritten as 



308 GEORGES-HENRI COTTET 

C w,(Yi- Yj12 Aq(Yi- Yj)=412-C up(Yi-xp)2 Aa(Yi-Xp) for all i. (13) 
i P 

If we return to the one-dimensional example in Section 2, the above requirement 
can be shown to make the algorithm reduce exactly to a conventional finite 
difference scheme at the points yi. Let us now assume that the grid size is q/2. If 
M is the matrix with general term aV = (y, - yj)’ ,4,Jyi - yi), we next observe that 
M is close to 161 (where I denotes the identity matrix), for we can write 

[A4wl,=~~ (;)‘w,a,. 
J 

Therefore (r72/4)[Mw] i can be interpreted as a discrete convolution of w by the 
kernel x*/i,(x) at the point yi. Since, by (8), the integral of this kernel is 4q2, 
neglecting terms of higher order gives 

[Mwli N -$ wj4q2 = 16w,. 

As a result, a natural way to solve the linear system (13) is to construct an iterative 
scheme on the decomposition M = 16Z+ (M - 161). This yields the formula 

2 
Wy+l- 

I -:+w, 

-~{Z~p(xr-Yi)2nn(xp-Yi)+Zw~(Yj-Yi)2n,(Yj-Yi) . (14) 
P J 1 

Let us comment now on the correction induced by the resolution of (12). 
Consider first the case when the original distribution of particles xP is “ideal.” 
In this case, quadratures along these particles are accurate and, in particular, for 
all Yi, 

4V2 NC up(xp- Yi12 Aq(xp-Yi). 
P 

Therefore solving (13) yields wi 2: 0, which means that in the diffusion formula (11) 
the grid does not affect the vorticity on the particles xp. This is reasonable, since 
those particles xP should be enough by themselves for solving the diffusion. On the 
other hand, if lagrangian particles are missing in some domain Q,, then for yj in 
Qk we must have 

Then, as already noticed, the diffusion scheme reduces to a standard finite difference 
scheme on the grid (yj). 
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Between these two extreme cases, the resolution of (13) ensures a matching 
between the grid and the lagrangian particles, and we will discuss this point of view 
when we interpret the method within the framework of domain decomposition 
techniques in Section 5. 

Another way to compute the volumes wj would be to consider any basis function 
4V associated with the grid (y,) and to use the fact that computing the volumes of 
the cells of the grid, using either the integral of dV or the quadrature of this integral 
along particles of both species yi and xP, give the same result; that is, 

~wj8,(vj-~i)+CUpg~(‘j-Xp)=S8,(?ij-X)dX=r12 foralli. (15) 
I P 

This formula leads once again to inverting a band system whose band width 
depends on the size of the support of dV. Choosing for instance 4 to be a tensor 
product of characteristic functions results in a diagonal system whose solution is 

wi= l --‘Ie2 C up4q(Yi-xp) 

( > 

for all i. 
P 

(16) 

In our calculations we have actually used (16) as a way to compute the first values 
w,; to be inserted in the right-hand side of (14). Then one iteration of the iterative 
process (14) has been performed. The final diffusion scheme, accounting also for the 
modifications described in Section 2, is 

+ (Wp’ - 4 Up’ AJYi - xp.) 
do, v 
dt=-$ J( (“j-mp) wjAq,p(xp-Yj) 

P’.i 

+ (Up’ - up) ~pA&p -x,9), (17) 

with initial conditions ai(O) = w(y,, 0), w,(O) = w(xi, 0). 
Besides maintaining a minimal resolution, it has been observed that another 

advantage of the approach just described is to guarantee a certain isotropy in the 
particle distribution. This may be desirable in particular in the neighbourhood of 
the boundary and in the context of vorticity creation algorithms. In particular, 
implementing Chorin’s algorithm (in order to satisfy the no slip condition) with its 
optimal consistency requires us to solve the transport diffusion equation with 
homogeneous boundary condition (see [6] for a discussion of the later point). It 
has been noticed in the 1D model problem that the particle diffusion scheme, as 
modified in Section 2, precisely accounts for this boundary condition. As for the 2D 
case, it is not difficult to realize that the same property will be true, but only when 
the distribution of particles is isotropic near the boundary. This property may be 
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violated by the lagrangian particles, once again due to the distortions in the flow, 
and introducing non moving particles with proper volumes restores the missing 
isotropy. We believe that this is the reason why it has been found satisfactory to 
implement the particle-grid superposition method along with the Chorin’s vorticity 
creation algorithm. 

4. NUMERICAL EXPERIMENTS 

We now describe a vortex-in-cell algorithm which uses the idea described above 
for solving viscous flows at high Reynolds numbers in exterior domains. Let 52’ be 
a bounded domain, with boundary r, and 52 the complementary of Sz’. In our 
experiments Q” will be a disc of radius 1 and the velocity at infinity will be taken 
uniform. On the obstacle, we assume that the flow satisfies the no-slip condition: 

u=o on K (18) 

In this case the system (l)-(5) must be supplemented with two boundary condi- 
tions: 

u.n=O on r (19) 

&I 
z=g on r, (20) 

where the function g has to be determined. The derivation of g and how this 
boundary condition leads to a vorticity creation algorithm are delicate matters (see 
[ 1, 61; [6] in particular describes a vorticity creation algorithm which is 
compatible with grid-free deterministic particle methods). However, as pointed out 
above, the superposition of a grid for the resolution of the diffusion restores the 
isotropy of the particle-grid mesh. As a result it has been found satisfactory to 
implement in this context Chorin’s vorticity creation algorithm: a layer of fixed 
particles is considered in the neighbourhood of r with a mesh size 61, and at each 
time step those particles are charged with an amount of vorticity equal to twice that 
of the local slip of the velocity. This layer of particles actually coincides with the 
first layer of grid points incorporated in the diffusion scheme. In our experiments 
the slip on the surface of the cylinder, measured by its L* norm is of the order 
of 2%. 

The resolution of the diffusion equation (11) has proved to be sensitive to the 
shape of the kernel n and it has been fruitful to choose a fourth-order kernel, as 
given in [4], 

4 18 -61~1~ 
A(x) = - 

7c(l+ Ix12)5’ 
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The value of q has been choosen equal to 2 J (given the fact that we were 
interested in high Reynolds numbers, the viscosity is here considered as a perturba- 
tion parameter; we refer to elO] for the mathematical aspects of this point of view). 
In order to avoid a O(N*) cost for the diffusion formula (17) we actually drop 
particles which are far enough. For that we cover a with boxes with size cq. Each 
particle is then given a box number and, reciprocially, particles within a given box 
are linked to the original list. In the formula (17), only those particles which are in 
a box connected to the box containing yj (or xp) are called. The resulting cost for 
the implementation of (17) is O(N). The truncation error involved in this process 
can be easily estimated by comparing the integrals in (8), with the integrals of the 
same quantities over a box of diameter c. In our calculations the value c = 0.75 has 
been found satisfactory. 

For the resolution of the elliptic system (3)-(5), a vortex-in-cell methodology has 
been chosen. Actually this choice, which is clearly non-essential in the overall 
algorithm, has been made for the sake of simplicity; in particular, VIC methods 
easily handle boundary conditions of the type (19) and are cheap. Moreover, recent 
results (see [7]) show that it is possible to design processing techniques which 
make VIC methods accurate. The particular VIC scheme used is the one described 
in [S]. It consists in a TSC scheme for the assignment (that is the vorticity carried 
by a particle is shared by the three closest grid points in both directions), along 
with a piecewise linear interpolation scheme for the computation of the velocities at 
the particles and a second-order Poisson solver. Contrasting with the above obser- 
vation concerning the fourth-order resolution of the diffusion, using a fourth-order 
solver for the Laplace equation has not proved to change significantly the results. 
A polar grid has been used in the domain 1 <Y < 5.5; 0 < 8 Q 2~. The artificial 
boundary condition for r = 5.5 is simply u = U, . 

For the time discretization of the various ordinary differential equations we have 
choosen a forward Euler scheme with a time step At = 0.01. An outline of the 
algorithm is as follows: 

l Resolution of the convection-diffusion equation 
1. VIC resolution of (3)-(5) and resolution of (6): (x;)~ + (xi+‘),,. 
2. Resolution of (17): (o:~)~,~ + (w;f’)i,,. 

l Vorticity creation at the boundary: computation of the slip at the boundary 
and charge of the first layer of particles with the corresponding vorticity. 

l Correction of the volumes (~1~)~ for the layers of grid points 
1. Resolution of (16). 
2. Resolution of (14). 

We have performed experiments corresponding to Reynolds numbers of 3000 and 
9500 (Re = ~/VU,). A constant number of layers of particles ( 15) and grid points 
(10) were initialized in the boundary layer. The width p of this region was 
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computed according to the formula p = 5 J2q. Then particles were radially 
generated upstream in the boundary layer to maintain there a resolution propor- 
tional to the square root of the viscosity in the tangential direction. Actually, to 
avoid useless accumulations of particles at the upstream stagnation point, 
lagrangian particles were only generated in the region - 7rc/8 < 6’ d 7n/8. It must be 
pointed out that no a priori symmetry has been imposed for the numerical solution. 
For Re = 3000 the resulting number of points (particles of both species) ranged 
between 4700 (for t = 0) and 6900 (for t = 4), while for Re = 9500 the corresponding 
numbers of points were 7800 and 11500. The increase between the two values of Re 
results only from a refinement in the tangential direction. For the resolution of the 
elliptic system, the same very rough 150 x 200 polar grid has been used. 

Figure 1 shows the initial distribution of particles of both species. In Fig. 2 the 
lagrangian particles distribution downstream around the cylinder is presented at 
time 2.5 for Re = 9500, showing holes as well as accumulations of particles along 
the lines. As a numerical measure of these distortions, in Fig. 3 we have plotted the 
evolution in time of the two following quantities: on the one hand, the maximum 
number of particles within one of the boxes of size q introduced for the implementa- 
tion of the diffusion formula divided by a factor 10 and on the other hand, the 
maximum value of the ratio r$/v2. It can be seen that, as particles accumulate in 
certain boxes, the latter number, which was originally close to 1, can be multiplied 
by a factor 7, justifying that locally the original diffusion formula could lead to 
stability problems. Figure 4 presents the flow structure at time 5, for Re = 3000. In 

FIG. 1. Grid-particle initialization for Re = 3000. 
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FIG. 2. Repartition of the lagrangian particles behind the cylinder at t = 2.5 for Re = 9500 

8 

0’ 
0 0.5 1 1.5 2 2.5 3 3.5 

time 

FIG. 3. Maximum value of qz/$ (dotted line) and fill-up of the q-boxes for Re = 9500. 
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FIG. 4. Flow structure at t = 5 for Re = 3000 

the forewake, the presence of two secondary eddies is visible. Figures 5 and 6 give 
the flow structure at t = 4.0 and t = 4.5 for Re = 9500. In Fig. 7 we have plotted the 
values of the vorticity on the surface of the cylinder at t = 4.0 for both Reynolds 
numbers. Some qualitative features of the modifications in the flow can be 
recognized on this picture: presence of the secondary eddies attested to by a rapid 
change of the sign in the vorticity, and the fact that the maximum vorticity is 

FIG. 5. Flow structure at (=4 for Re=9500. 
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FIG. 6. Flow structure at I = 4.5 for Re = 9500. 
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FIG. 7. Vorticity values on the surface of the cylinder at I =4 for Re=9500 (dotted line) and 
Re = 3000. 
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present in the rear part of the body, as opposed to what happens for lower 
Reynolds numbers. However, when compared to the numerical results in [9], these 
results attest to a lack of accuracy in the representation of the vorticity. This fact 
meets the classical observation that vortex methods, while giving accurate results 
for the velocity, suffer accuracy difficulties for the vorticity itself. Also one must 
keep in mind, when comparing with the results in [9], that in this reference the 
space resolution is significantly higher. 

Figure 8 shows the velocity profile behind the cylinder at various times for 
Re= 3000. Negative values correspond to a back flow which can be greater in 
absolute value than the velocity at infinity. However, experiments show that when 
the Reynolds number increases past the value of 1000, the strength of this back 
flow, as well as the wake length decrease. This is confirmed by Fig. 9, which is the 
analogue of Fig. 8 for Re = 9500. In both Figs. 8 and 9 our numerical results are 
compared with experimental data as reported in [2]. The agreement is satisfactory 
with, however, a discrepancy appearing at large times for Re = 9500. 

+..--.* 
.+--.- : 

.; ,,. 
: /o---- 

*.- : .* 
,A/ 

i.. .:; ,..,,,_ 

.i’ 

: : 
t:’ : 

;.. ,_ 

..; - 

0 0.2 0.4 0.6 0.8 1 

distance behind cylinder 

1.2 1.4 1.6 

FIG. 8. Velocity profile on the axis behind the cylinder for Re = 3000 at times 2, 3,4, 5 (lines) 
compared with experimental results (points). 



PARTICLE-GRID SUPERPOSITION METHOD 317 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 

distance behind cylinder 

FIG. 9. Velocity profile on the axis behind the cylinder for Re=9500 at times 2, 3,4 (lines) 
compared with experimental results (points). 

5. CONCLUSION 

A particle-grid superposition method for solving the Navier-Stokes equations has 
been presented, whose philosophy is totally different from the conventional particle- 
in-cell methods. The idea is to maintain the advantages of particle methods in 
convection dominated flows while correcting the particle diffusion formula in the 
boundary layer. Given, on the one hand, the roughness of the artificial boundary 
conditions and of the polar grid used to compute the velocity and, on the other 
hand, the limited number of particles used in our simulations, the numerical results 
concerning the velocity profiles for small times can be considered as satisfactory. 
However some problems remain. Part of them are related to the fact that particles 
are still used in the boundary layer. In particular, the efficiency of the vorticity crea- 
tion process seems to be very sensitive to the position of the first layer of particles. 
For such reasons we believe that the ultimate form of the proposed method would 
be a domain decomposition algorithm where a complete Navier-Stokes finite 
difference scheme would be used in the boundary layer. This would allow us to get 
rid of the particles in the very neighbourhood of the obstacle. Therefore dealing 
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with the boundary condition would be easier and the representation of the vorticity 
would presumably be more accurate in the boundary layer. In this situation 
particles would only need to be generated upstream in such a way that they are 
present at the interface between the two domains, and the key point would be to 
use (16) and (17) to ensure a correct transfer of vorticity between the boundary 
layer and the wake. Here we want to emphasize the fact that this matching 
procedure is strongly based on our choice of a deterministic approach for the 
vortex resolution of the diffusion, and it would not be appropriate with a random 
walk method. As a result it is different from the one proposed in [ 111 in several 
respects. One of them is the fact that in this later method, which combines random 
walk and finite difference schemes, the transfer of vorticity is achieved partly by 
means of particle generation at the interface, which requires some caution in order 
to prevent increasing the number of particles too much. To finish with further 
developments of the method we must also mention that the vortex-in-cell approach 
used here for computing the velocity of the lagrangian particles makes it necessary 
to use a grid. Although it has been found that a crude grid did not deteriorate the 
overall results for the velocity, for higher Reynolds numbers this grid could lead to 
a limitation. Also related to this grid, the necessity of introducing an artificial 
boundary condition for the computation of the velocity is an obstacle if one wishes 
to consider large time computations, as the wake is clearly artificially constrained 
to remain within the limits of the computational domain (we believe that this is the 
leading cause of discrepancy in the result in Fig. 9 for t = 4). Therefore an other 
future improvement would be to replace this vortex-in-cell method by a fast vortex 
blob method, and in the future we plan to incorporate these ideas. in a more 
extensive study of the wake at high Reynolds numbers. 
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